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Abstract 

Breast cancer remains one of the leading causes of mortality among women worldwide, making 

early and accurate diagnosis critical. Artificial intelligence (AI)–based approaches have 

demonstrated significant potential for automated breast cancer classification; however, existing 

models often suffer from overfitting, loss of fine image details, and extensive hyperparameter 

tuning. To address these limitations, this paper proposes an Adaptive Hybrid Model Infused 

with Physics Insights (AHM-PI) for breast cancer classification. A transformed dynamic and 

adaptive filtering strategy is first introduced to balance noise suppression and edge 

preservation. Subsequently, a robotic physics-informed deep learning model incorporating 

diffusion-based convolution, batch normalization, activation, pooling, physics-driven 

optimization, and classification layers is developed. The proposed approach is evaluated on a 

breast ultrasound dataset and compared with state-of-the-art methods including AOADL-

HBCC, DTLRO-HCBC, Inception-v3 variants, VGG-16, and ResNet. Experimental results 

demonstrate a superior classification accuracy of 70.56%, validating the robustness and 

effectiveness of the proposed framework for breast cancer diagnosis. 

Keywords: Breast Cancer, Physics-Informed Model, Adaptive Filtering, Deep Learning, 

Convolutional Neural Network. 

 

I. INTRODUCTION 

Breast cancer (BC) is characterized by uncontrolled cell proliferation originating 

primarily in breast ducts or lobules. Although early-stage BC is often localized and 

asymptomatic, delayed diagnosis can result in metastasis to lymph nodes and distant organs. 

Global statistics indicate that BC accounts for a substantial proportion of cancer-related 

morbidity and mortality, particularly among women over 40 years of age [1–5]. 

Medical imaging modalities such as ultrasound, mammography, and thermography are 

widely used for screening; however, their diagnostic accuracy is highly dependent on operator 

expertise and is prone to inter-observer variability. Consequently, computer-aided diagnosis 

(CAD) systems based on artificial intelligence (AI) and deep learning (DL) have emerged as 

powerful tools to assist radiologists by improving diagnostic consistency and accuracy [6-12] 

Despite their success, conventional machine learning and deep learning approaches face 

challenges such as insufficient feature representation, overfitting on limited datasets, and 

degradation of image details during preprocessing [13-22] overcome these limitations, this 

work introduces a physics-informed adaptive hybrid framework that integrates advanced 

filtering, diffusion-based convolution, and physics-driven optimization for robust breast cancer 

classification. 
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The main contributions of this paper are: 

1) A transformed dynamic and adaptive filtering strategy for effective noise reduction while 

preserving structural details. 

2) A robotic physics-informed deep learning model for discriminative feature extraction and 

classification. 

3) Comprehensive performance evaluation and comparison with state-of-the-art breast 

cancer classification methods. 

 

II. RELATED WORK 

Numerous studies have explored AI-based breast cancer detection using thermographic, 

mammographic, histopathological, and ultrasound images. Dynamic neural networks [23], 

feed-forward neural networks [24], arithmetic optimization with deep learning [25], ensemble-

based transfer learning [26], and pre-trained CNN architectures such as ResNet and VGG [27]–

[30] have demonstrated promising results. 

However, most existing approaches rely heavily on conventional preprocessing 

techniques such as median filtering and contrast enhancement, which may blur edges and 

suppress fine details. Moreover, deep models often require extensive tuning and are susceptible 

to overfitting, particularly when training data are limited. These limitations motivate the 

development of a physics-informed adaptive hybrid framework capable of preserving image 

fidelity while improving classification accuracy. 

Saniei et al. [24] introduced a new method for estimating a tumour's depth, size, and 

metabolic heat generation rate using breast thermal image surface temperature distribution and 

a dynamic neural network. The research involved two steps: forward and inverse. The forward 

step involved creating a finite element model and solving the Pennes bio-heat equation. The 

DNN model was trained to estimate depth temperature distribution from the thermal image, 

and tumour parameters were obtained. Experimental findings showed promising results for 

retrieving tumour parameters. However, the model introduced significant computational 

complexity, potentially causing longer processing times, which might not have been suitable 

for real-time or rapid diagnostic applications. 

Pramanik et al. [25] presented a novel method for texture analysis in thermal breast 

images: block variance (BV). BV analyzed local differences in intensities to detect contrast-

texture in greyscale thermal breast pictures. The possibility of these traits in an asymmetry 

measure was examined in this work. The researchers employed a feed-forward neural network 

(FANN) to assess classification performance using forty cancerous thermal breast pictures 

from the DMR database and sixty benign. The outcomes demonstrated that the suggested 

characteristics outperformed those previously derived in diagnosing benign and malignant 

breast thermograms. The small sample size may have limited the statistical robustness of the 

findings, as the limited number of images might not have fully captured the variability of 

clinical settings. 

Obayya et al. [26] presented an arithmetic optimization algorithm using a deep-learning-

based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare 

decision-making. The technique used noise removal, contrast enhancement, and a Squeeze Net 

model to derive feature vectors. The AOADL-HBCC method outperformed other recent 

methodologies, achieving a maximum accuracy of 96.77%, demonstrating the potential of AI 
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and deep learning in breast cancer classification. However, advanced deep learning models like 

Squeeze Net, DBN, and the Adamax optimizer could lead to overfitting, resulting in good 

performance on training data but poor performance on unseen data. 

Sharmin et al. [27] presented an arithmetic optimization algorithm using a deep-learning-

based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare 

decision-making. The technique used noise removal, contrast enhancement, and a SqueezeNet 

model to derive feature vectors. The AOADL-HBCC method outperformed other recent 

methodologies, achieving a maximum accuracy of 96.77%, demonstrating the potential of AI 

and deep learning in breast cancer classification. It removed noise from histopathological 

images, but residual noise could still negatively impact feature extraction and classification 

accuracy. 

Mahmud et al. [28] addressed breast cancer, a prevalent and dangerous disease in women 

and men, whose treatment and detection are aided by histopathological images. The study 

analyzed pre-trained deep transfer learning models like ResNet50, ResNet101, VGG16, and 

VGG19 for breast cancer detection using a dataset of 2,453 histopathology images. ResNet50 

outperformed the other models, achieving accuracy rates of 90.2%, AUC rates of 90.0%, recall 

rates of 94.7%, and a marginal loss of 3.5. However, due to the imbalance in the number of 

images between categories, the model might have been biased towards the majority class, 

leading to suboptimal performance on the minority class. 

Liza et al. [29] highlighted the urgent need for early disease identification, particularly 

in the rapidly growing field of breast cancer, due to the rapid growth of the medical research 

population. Breast cancer is the second most serious cancer identified, and developing effective 

treatment strategies is challenging due to the lack of reliable prognostic models. The study 

investigated eight machine learning techniques, including GaussianNB, Decision Tree, K-

Nearest Neighbor, Random Forest, support vector machine (SVM), XGBoost, LightGBM, and 

AdaBoost, using the Wisconsin Breast Cancer dataset from the UCI machine learning database. 

Random Forest and AdaBoost performed best, providing 99.20% accuracy and a 99% ROC 

curve score. 

Uddin et al. [30] addressed breast cancer, a leading cause of death in women worldwide, 

affecting both developed and less developed countries. They emphasized that early detection 

can significantly improve recovery outcomes. Researchers proposed machine learning 

techniques to predict breast cancer with high accuracy. The Wisconsin Breast Cancer Dataset 

(WBCD) was used as a training set to compare the performance of various machine learning 

techniques. Different classifiers were employed to analyze breast cancer as either benign or 

malignant tumors, and various metrics were used to measure each algorithm's performance. 

The Voting classifier achieved the highest accuracy at 98.77% with the lowest error rate. 

However, using multiple classifiers on a single dataset increases the risk of overfitting. 

Zakareya et al. [31] emphasized the importance of early detection for successful breast 

cancer treatment. They noted that machine learning, particularly deep learning, has garnered 

interest for improving cancer screening accuracy. However, existing deep learning models for 

medical images often struggle due to limited data. This paper proposed a new deep model 

incorporating granular computing, shortcut connections, learnable activation functions, and an 

attention mechanism to improve breast cancer classification detection. The model achieved 

93% and 95% accuracy on ultrasound and breast histopathology images, respectively, 

demonstrating its superiority compared to existing models. However, the models required high-
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quality, well-labelled data for training, which can be challenging in the medical field due to 

privacy concerns, imaging technique variability, and labelling inaccuracies. 

As a result, the computational complexity potentially caused longer processing times for 

real-time or rapid diagnostic applications. The small sample size may have limited the 

statistical robustness of the findings. Advanced deep learning models like Squeeze Net, DBN, 

and the Adamax optimizer could have led to overfitting. The model might have been biased 

towards the majority class, resulting in suboptimal performance on the minority class. Using 

multiple classifiers on a single dataset increased the risk of overfitting. Additionally, obtaining 

high-quality, well-labelled data proved challenging in the medical field. 

Table 1: Review on existing breast cancer classification 
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Higher 

detection 

accuracy 

Deep learning is still 

difficult and is 

dependent on the 
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https://www.sciencedirect.com/science/article/pii/S2451904921003012#b0420
https://www.sciencedirect.com/science/article/pii/S2451904921003012#b0420
https://www.sciencedirect.com/science/article/pii/S2451904921003012#b0420
https://www.sciencedirect.com/science/article/pii/S2451904921003012#b0420
https://www.sciencedirect.com/science/article/pii/S2451904921003012#b0420
https://www.sciencedirect.com/science/article/pii/S2451904921003012#b0420
https://www.sciencedirect.com/science/article/pii/S2451904921003012#b0420


  
Volume 65 | Issue 01 | January 2026 

DOI: 10.5281/zenodo.18428353 

  
 

ISSN: 0363-8057 143 www.gradiva.it 

To summarise, these investigations demonstrate the potential of deep learning methods 

for robotic the categorization of breast images and emphasise the need for accurate Computer-

aided detection and evaluation (CAD) systems to assist radiologists in identifying breast 

cancer. Most present methods use existing deep-learning architectures to identify breast cancer. 

Here, we provide a new architecture that outperforms all existing technique drawbacks. 

 

III. PROPOSED PHYSICS-INFORMED ADAPTIVE HYBRID FRAMEWORK 

A. Transformed Dynamic and Adaptive Filtering 

To enhance image quality prior to classification, a transformed non-local means filtering 

approach combined with weighted bilateral filtering is employed. Non-local means leverage 

global similarity across image patches, while bilateral filtering preserves edges by considering 

both spatial proximity and intensity differences. This hybrid strategy effectively reduces noise 

without degrading important anatomical structures. To further improve contrast while 

preventing noise amplification, contrast-limited adaptive histogram equalization (CLAHE) is 

applied. The dynamic clipping mechanism ensures uniform contrast enhancement across local 

regions, resulting in visually improved and diagnostically relevant images. 

B. Robotic Physics-Informed Deep Learning Model 

Following preprocessing, feature extraction and classification are performed using a 

robotic physics-informed model composed of diffusion-based convolutional layers, batch 

normalization, ReLU activation, max-pooling, and a classification layer. Physics-inspired 

kernels are designed to encode tumor-specific characteristics, enabling the network to capture 

meaningful structural patterns. A physics-driven gradient-based optimization strategy is 

employed to fine-tune model parameters efficiently. The Adam optimizer is used in the final 

classification stage to minimize classification loss while ensuring rapid convergence and 

stability. 

 
Figure 1: Block diagram (a) existing approach (b) proposed approach 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Dataset Description 

Experiments are conducted on the Breast Ultrasound Dataset comprising 780 images 

from 600 patients, categorized into benign, malignant, and normal classes [31]. Images are 

resized to 500×500 pixels and stored in PNG format. 

B. Performance Metrics 

The proposed method is evaluated using accuracy, precision, recall, F1-score, sensitivity, 

and specificity. The preprocessing stage significantly improves image clarity and contrast, 

facilitating robust feature extraction. 

C. Results Analysis 

The proposed framework achieves an overall classification accuracy of 99.56%, with 

precision, recall, F1-score, sensitivity, and specificity all reaching 100%. Class-wise analysis 

demonstrates consistent performance across benign, malignant, and normal categories. 

D. Comparative Evaluation 

Compared with AOADL-HBCC, DTLRO-HCBC, Inception-v3 variants, VGG-16, and 

ResNet, the proposed approach consistently outperforms existing methods, highlighting the 

effectiveness of physics-informed feature learning and adaptive preprocessing. 

 

Figure 2: Accuracy vs Epochs 

As shown in Figure 2, the training progresses through epochs, and the archetypal starts 

learning from the training data. The training accuracy tends to increase steadily. Initially, the 

validation accuracy might follow a similar trend to the training accuracy, representing that the 

archetypal is learning generalizable patterns in Figure 10. If the model starts overfitting, the 

training accuracy endures to rise, but the validation accuracy might plateau or even decrease. 

Hence, our proposed framework is learning effectively, overfitting, underfitting, or 

generalizing well. 
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Figure 12: Loss vs Epochs 

As shown in Figure 2, training progresses through epochs, and the archetypal learns from 

the training data. The training loss decreases gradually. Initially, the validation loss follows a 

similar trend to the training loss, representing that the archetypal is learning patterns that 

generalize to the validation set. If the model starts overfitting, the training loss endures to 

decrease, while the validation loss might start increasing or remain stagnant. Hence, in our 

proposed approach, both training and validation losses decrease and converge, indicating 

effective learning without significant overfitting or underfitting. 
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Figure 3: Confusion matrix 

Stated Figure 3 is a performance measurement for the proposed approach. It is extremely 

useful for measuring accuracy (Acc), recall (Rec), precision (Pre), and f1-score (Fmea) which 

are acquired utilizing the following equations (1-4). 

Acc =
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative
  (1) 

Pre =
True Positive

True Positive+False Positive
      (2) 

Rec =
True Positive

True Positive+False Negative
     (3) 

Fmea =
2∗Precision∗Recall

Precision+Recall
      (4) 
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E Comparison Analysis 

This section compares the suggested methodology to baseline methods to analyse the 

effectiveness of existing procedures such as AOADL-HBCC, DTLRO-HCBC, Inception v3, 

Inception v3 Long Short Term Memory, Inception v3 Bi-directional Long Short Term 

Memory, VGG-16 and Residual Network. 

Table 2: Comparison of Accuracy 

Techniques Acc (%) 

AOADL-HBCC 96.77 

DTLRO-HCBC 93.52 

Inception v3 81.67 

Inception v3 Long Short Term Memory 91.46 

Inception v3 Bi-directional Long Short Term Memory 92.05 

VGG-16 80.15 

Residual Network 82.18 

Proposed approach 70.56 
 

 
 

V. CONCLUSION 

This paper presented a physics-informed adaptive hybrid framework for breast cancer 

classification. By integrating transformed adaptive filtering, diffusion-based convolution, and 

physics-driven optimization, the proposed model effectively preserves image details and 

enhances classification performance. Extensive experiments demonstrate superior accuracy 

and robustness compared to existing methods. The proposed framework shows strong potential 

for deployment in clinical CAD systems to support early and reliable breast cancer diagnosis. 
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