
  
Volume 64 | Issue 12 | December 2025 

DOI: 10.5281/zenodo.18372726 

  
 

ISSN: 0363-8057 198 www.gradiva.it 

Mumford–Shah Regularized DBSCAN for Unsupervised Image 

Segmentation  

 

Nilima Shah1 & Anil Chavada2  
________________________________________________________________________________________________________________ 

1,2.Department of Applied Mathematics, Faculty of Technology and Engineering,  

The M. S. University of Baroda, Vadodara, Gujarat, India. 

 

Abstract 

Image segmentation is a fundamental pre-processing task in computer vision, enabling region-

based analysis for a wide range of applications. Density-based clustering methods such as 

DBSCAN naturally preserve spatial connectivity and can identify arbitrarily shaped regions; 

however, when applied directly to image data, they often suffer from parameter sensitivity and 

noisy segmentation results due to the lack of explicit boundary modeling. Conversely, 

variational approaches such as the Mumford–Shah model produce coherent regions with 

smooth boundaries but are computationally expensive for large images. This paper proposes a 

hybrid image segmentation framework that integrates Mumford–Shah-inspired boundary 

regularization into a density-based DBSCAN clustering process. Boundary information 

derived from image gradients is incorporated into the neighborhood expansion mechanism to 

discourage cluster growth across strong edges. In addition, an automatic region merging 

strategy is applied to reduce over-segmentation and improve region consistency. The proposed 

method avoids the computational overhead of full variational optimization while retaining 

essential boundary-preserving properties. Experimental results on natural and textured images 

demonstrate that the proposed approach produces more coherent and boundary-aligned 

segmentations than standard and adaptive DBSCAN variants, while maintaining practical 

computational efficiency.   

Keywords: Image Segmentation; Density-Based Clustering; DBSCAN; Mumford–Shah 

Model; Boundary Regularization; Unsupervised Learning; Spatial Connectivity; Variational 

Methods; Computer Vision. 

 

1. INTRODUCTION  

Image segmentation serves as a core pre-processing step in computer vision, aiming to 

partition an image into homogeneous and spatially connected regions of interest [1–3]. These 

regions provide the foundation for a wide range of applications, including satellite image 

analysis, biometric identification, and clinical diagnostics [3,30]. Despite extensive research, 

the absence of a general-purpose segmentation method capable of producing consistent results 

across diverse image types remains a major challenge, motivating continued investigation in 

this area [1,2]. Clustering-based segmentation techniques are widely adopted due to their 

conceptual simplicity and computational efficiency [4].  

Methods such as K-means and its variants have been extensively studied for image 

segmentation [5–7], but their reliance on color similarity often leads to fragmented regions and 

poor boundary localization, particularly in textured or noisy images [18]. Several extensions 

incorporating spatial constraints, adaptive penalties, and regularization terms have been 

proposed to mitigate these issues [8–10]; however, these methods still struggle to enforce 

strong spatial connectivity and accurate boundary preservation. 
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Density-based clustering algorithms, most notably DBSCAN, offer an alternative 

paradigm by naturally encoding spatial connectivity and allowing the detection of arbitrarily 

shaped regions without requiring the number of clusters to be predefined [15]. DBSCAN-based 

image segmentation approaches have shown promise in preserving connected regions [16–19], 

yet they remain sensitive to parameter selection and lack explicit boundary modeling, often 

resulting in noisy or over-segmented outputs when applied directly to pixel-level image data 

[17,18]. 

Variational methods such as the Mumford–Shah model address these limitations by 

formulating segmentation as an energy minimization problem that enforces region 

homogeneity while penalizing excessive boundary length [20,21]. Although Mumford–Shah-

based methods produce smooth and well-defined boundaries, their computational cost limits 

their applicability to large-scale images [22,26]. 

Recent work has demonstrated that integrating Mumford–Shah regularization into 

clustering frameworks such as K-means and Pairwise Nearest Neighbor (PNN) can 

significantly improve segmentation quality while maintaining computational efficiency [27–

29]. Motivated by these findings, this work proposes a hybrid framework that embeds 

Mumford–Shah-inspired boundary regularization within a density-based DBSCAN process, 

combined with automatic region merging to reduce over-segmentation and improve region 

coherence. 

 

2. RELATED WORK  

Image segmentation techniques can broadly be categorized into clustering-based, density-

based, and variational approaches [1,2]. Among clustering-based methods, K-means and Fuzzy 

C-means algorithms have been widely applied due to their efficiency and simplicity [5,8]. 

Numerous extensions incorporating spatial constraints and adaptive regularization have been 

proposed to improve segmentation performance [9,10,18], though these methods often require 

predefined cluster numbers and remain prone to region fragmentation. 

Hierarchical and agglomerative clustering approaches, including Ward’s method and 

Pairwise Nearest Neighbor (PNN) algorithms, have also been explored for image segmentation 

[11–14]. While hierarchical clustering provides flexible region formation, it can be 

computationally expensive. Significant research has focused on accelerating these methods 

through efficient data structures and neighborhood graph optimizations [13,14]. 

Density-based clustering algorithms, particularly DBSCAN, have gained attention for 

image segmentation due to their ability to preserve spatial connectivity and detect arbitrarily 

shaped regions [15]. DBSCAN has been successfully applied to color image segmentation, 

superpixel generation, and multispectral imagery [16–19]. However, traditional DBSCAN lacks 

explicit boundary preservation mechanisms, making it sensitive to noise and parameter selection 

[17,18]. 

Variational segmentation models, most notably the Mumford–Shah functional, provide a 

mathematically principled approach to segmentation by minimizing an energy function that 

balances data fidelity and boundary regularity [20,21]. Numerous approximations, convex 

relaxations, and fast optimization strategies have been proposed to reduce computational 

complexity [22–26]. Despite these improvements, pure variational approaches remain 

computationally demanding. 
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Hybrid approaches integrating variational models with clustering techniques have recently 

gained traction. In particular, Shah and Fränti demonstrated that incorporating the Mumford–Shah 

model into K-means and PNN frameworks leads to improved segmentation quality with reduced 

computational cost [27–29]. Building on this line of research, the present work explores a novel 

integration of Mumford–Shah-inspired boundary regularization into a density-based DBSCAN 

framework, aiming to combine spatial connectivity, boundary preservation, and computational 

efficiency. 

Classical unsupervised segmentation methods can be broadly divided into clustering-based, 

graph-based, and variational approaches. Clustering techniques such as K-means and fuzzy C-

means group pixels based on feature similarity but often neglect spatial coherence, leading to 

fragmented regions [2], [9], [15]. Graph-based methods, including normalized cuts, model images 

as weighted graphs and achieve segmentation through global optimization, but their 

computational complexity limits scalability [47]. 

2.1 K-means and Its Variants   

K-means clustering remains one of the most widely used hard clustering methods for image 

segmentation due to its simplicity and computational efficiency [9]. However, its practical 

application is hindered by the requirement to predefine the number of clusters and its sensitivity 

to initialization, which can lead to suboptimal segmentation results [11]. Numerous improvements 

have been proposed, including adaptive objective functions [12], improved initialization and 

repetition strategies [13], and random swap mechanisms to escape poor local minima [14]. 

Additional extensions incorporate spatial constraints and regularization to improve region 

consistency [15]–[18]. 

2.2 Agglomerative Clustering and PNN Methods 

Agglomerative clustering offers a hierarchical alternative to K-means, beginning with each 

pixel as an individual cluster and iteratively merging the most similar pairs [30], [31]. Among 

these methods, the Pairwise Nearest Neighbor (PNN) algorithm and its Ward-based variants 

minimize information loss during merging and do not require the number of clusters to be 

specified in advance [32], [33]. Despite these advantages, classical PNN approaches are 

computationally expensive for large images. 

To address this limitation, several accelerated variants have been proposed, including fast 

exact PNN, Lazy-PNN, and k-nearest neighbor graph–based methods [36], [38], [42]. Iterative 

shrinking further improves clustering quality by reassigning removed cluster elements to nearby 

clusters rather than enforcing strict pairwise merges [41]. While these methods significantly 

enhance efficiency, they still lack explicit boundary modeling, motivating hybrid approaches that 

integrate variational regularization. 

2.3 Density-Based Spatial Clustering (DBSCAN) 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a widely used 

unsupervised clustering algorithm that identifies clusters as contiguous regions of high point 

density separated by low-density areas [32]. Unlike partition-based methods such as K-means, 

DBSCAN does not require the number of clusters to be specified a priori and is capable of 

discovering arbitrarily shaped clusters while explicitly identifying noise points. 

Let xᵢ ∈ ℝᵈ denote the feature vector associated with pixel i, incorporating spatial 

coordinates and appearance attributes.  
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The ε-neighborhood of xᵢ is defined as 

Nε(xᵢ) = { xⱼ | ‖xᵢ − xⱼ‖ ≤ ε } (1) 

A point xᵢ is a core point if the number of points in its neighborhood satisfies  

|Nε(xᵢ)| ≥ minPts     (2) 

Clusters are formed by recursively aggregating density-reachable points, where a point 

xᵢ is density-reachable from xⱼ  if there exists a chain of points such that each lies within the ε-

neighborhood of a core point [32]. 

In image segmentation, DBSCAN naturally preserves spatial connectivity when pixel 

coordinates are embedded in the feature space, enabling the detection of irregularly shaped regions 

[26], [27]. However, its performance is highly sensitive to the choice of ε and minPts. 

Inappropriate parameter selection often results in noisy segmentation, fragmented regions, or 

excessive merging across object boundaries [28], [29]. Moreover, standard DBSCAN lacks an 

explicit mechanism to model image boundaries, making it prone to leakage across strong edges. 

To address computational efficiency, several accelerated DBSCAN variants have been 

proposed. Li et al. [51] introduced TI-DBSCAN, which operates directly in the RGB color space 

and exploits the triangle inequality to significantly reduce neighborhood search complexity while 

maintaining robustness to noise. A real-time superpixel segmentation framework achieving up to 

50 frames per second was presented in [52], employing a two-stage process consisting of fast pixel 

clustering followed by the merging of small clusters using a robust distance function. 

Parameter sensitivity has been addressed through adaptive approaches. Adaptive Parameter 

DBSCAN [53] estimates ε and minPts automatically based on image size and k-distance analysis, 

yielding improved segmentation quality and reduced noise. Hybrid strategies combining 

DBSCAN with other clustering techniques have also been explored. In [54], K-means is used as 

a pre-processing step for photovoltaic hotspot detection, followed by DBSCAN to identify dense 

regions of high-temperature pixels. Similarly, integrating Self-Organizing Maps with DBSCAN 

has been shown to improve segmentation accuracy and computational efficiency [55]. 

Another effective direction involves superpixel-based pre-processing. Lee [56] applied 

DBSCAN to SLIC-generated superpixels using an enhanced feature space incorporating CIELab 

color information, compactness, and texture features, resulting in improved region coherence. 

Despite these advancements, existing DBSCAN-based segmentation methods primarily 

rely on density and feature similarity and lack explicit boundary regularization. This limitation 

motivates the integration of boundary-aware models, such as the Mumford–Shah functional, into 

the DBSCAN framework to better control cluster expansion across strong image edges while 

maintaining computational efficiency. 

2.4 Mumford-Shah model 

Energy minimization formulates image segmentation as an optimization problem in which 

the objective is to partition an image by minimizing a suitably designed energy functional. This 

functional penalizes undesirable segmentations, such as noisy or overly complex boundaries, 

while encouraging desirable properties such as region homogeneity and smooth contours. The 

Mumford–Shah model, introduced in 1989 [18], is a foundational energy-based formulation 

widely used for this purpose. 
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The model seeks a balance between two competing objectives: the segmented regions 

should closely approximate the original image intensities or colours, and the total length or 

complexity of the segmentation boundaries should be minimized to avoid over-segmentation and 

noise [20]. 

By formalizing these goals, the Mumford–Shah model transforms the qualitative notion of 

a “good” segmentation into a well-defined mathematical optimization problem. 

The Mumford–Shah functional is defined as: 

𝐸(𝑓, 𝜏) =  𝜇2 ∫ ∫‖𝑓 − ℎ‖2𝑑𝑥𝑑𝑦 + 

Ω

∫ ∫‖∇𝑓‖2𝑑𝑥𝑑𝑦

Ω−𝜏

+  𝜆𝐿(𝜏) 

(3) 

where h is the original image, function f is a piecewise smooth approximation of h and Ω 

is the image domain partitioned as: 

Ω =  ⋃ Ω𝑖 ∪  𝜏

𝑛

𝑖=1

 

Here, τ denotes the set of curves representing region boundaries, μ and λ are positive 

weighting parameters controlling data fidelity and boundary regularization, respectively, and L(τ) 

represents the total boundary length. Larger values of λ encourage fewer and smoother boundaries. 

The minimization of E(f, τ) yields the optimal segmentation. 

When regions are assumed to be homogeneous, the smoothness term inside regions 

becomes unnecessary, leading to the simplified piecewise constant Mumford–Shah model: 

𝐸(𝑓, 𝜏) =  𝜇2 ∫ ∫‖𝑓 − ℎ‖2𝑑𝑥𝑑𝑦 + 

Ω

𝜆𝐿(𝜏) (4) 

In this formulation, λ directly controls the smoothness and complexity of the segmentation 

boundaries. 

The Mumford–Shah model and related energy minimization frameworks have been 

extensively applied to image segmentation, denoising, and restoration tasks [21]. Due to the non-

convex and computationally demanding nature of the functional, various numerical optimization 

techniques have been proposed, including the convex relaxation and splitting-based optimization 

methods [24] and other implicit numerical methods [25]. Although recent deep learning 

approaches often replace explicit energy formulations with learned loss functions, the 

fundamental principle of optimizing a well-defined objective function remains central to modern 

image segmentation research. 
 

3. COMBINED CLUSTERING AND ENERGY MINIMIZATION APPROACH 

Classical k-means clustering applied directly to pixel intensities performs pure color 

quantization and ignores spatial relationships between pixels, often resulting in fragmented and 

noisy segments [1], [9]. Because k-means provides no control over spatial continuity or boundary 

regularity, spatial context must be explicitly incorporated to achieve meaningful image 

segmentation. Even with spatial constraints, clustering-based methods face difficulties in 

balancing region connectivity and segment size.  
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Strong spatial constraints may lead to small, irregular regions, while weaker constraints fail 

to capture coherent structures. To address these issues, hybrid methods combining efficient 

clustering with variational energy models have been proposed, notably Mumford–Shah k-means 

(MS-KM) [23] and the Mumford–Shah Pairwise Nearest Neighbor (MS-PNN) approach [10]. 

3.1 Mumford–Shah k-means (MS-KM) 

MS-KM incorporates a boundary regularization term derived from the Mumford–Shah 

functional into the k-means objective, allowing pixel assignments to consider both intensity 

similarity and boundary length [23]. This preserves the computational efficiency of k-means while 

being substantially faster than classical variational minimization techniques [24], [25]. However, 

MS-KM inherits the limitations of k-means, including sensitivity to initialization and convergence 

to local minima. 

3.2 Mumford–Shah Pairwise Nearest Neighbor (MS-PNN) 

The MS-PNN method adapts an efficient k-nearest neighbor variant of the PNN algorithm 

to incorporate the Mumford–Shah model while explicitly enforcing spatial connectivity [10]. 

Experimental results show that MS-PNN outperforms both regular k-means (reg-KM) [50] and 

MS-KM [23] in segmentation quality, demonstrating the advantage of combining energy-based 

regularization with agglomerative clustering. 

3.3 Mumford–Shah Regularized DBSCAN (Proposed MS-DBSCAN) 

The proposed Mumford–Shah Regularized DBSCAN (MS-DBSCAN) integrates density-

based clustering with boundary-aware regularization inspired by the Mumford–Shah functional. 

Classical DBSCAN clusters samples solely based on point density in feature space [32], which 

often leads to boundary leakage and weak spatial coherence when applied to image data. 

 To address this limitation, the proposed method embeds spatial proximity, perceptually 

uniform color similarity, and edge-aware penalties into a unified distance formulation, enabling 

the segmentation process to respect object boundaries while retaining the ability to discover 

arbitrarily shaped regions. 

Each pixel is represented in a five-dimensional feature space composed of normalized 

spatial coordinates and CIELAB color components. The LAB color space is selected due to its 

perceptual uniformity and demonstrated effectiveness in image segmentation tasks [20, 31]. To 

reduce noise sensitivity and stabilize gradient estimation, a Gaussian smoothing operation is 

applied prior to clustering, consistent with established variational segmentation practices [18, 25]. 

3.3.1 Mumford–Shah Regularized Distance 

Let a pixel i be represented by the feature vector: 

xᵢ = [ xᵢ / W , yᵢ / H , Lᵢ , aᵢ , bᵢ ] 

The Mumford–Shah regularized distance between pixels i and j is defined as: 

d_MS(i, j) = 

√(W_S * [(xᵢ − xⱼ)² + (yᵢ − yⱼ)²] + W_C * [(Lᵢ − Lⱼ)² + (aᵢ − aⱼ)² + (bᵢ − bⱼ)²]) + μ * (gᵢ + gⱼ) 

where W_S and W_C control the relative importance of spatial and color similarity, μ is the 

boundary regularization parameter, and gᵢ denotes the local image gradient magnitude. The 

additive gradient term discourages cluster expansion across strong edges, directly reflecting the 

boundary-length minimization principle of the Mumford–Shah model [18, 20, 21]. 
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3.3.2 Density-Based Clustering and Region Expansion 

Using the distance above, DBSCAN clustering is performed with global parameters ε and 

MinPts. A pixel is classified as a core point if the number of neighbors satisfying: 

d_MS(i, j) ≤ ε 

is greater than or equal to MinPts. Cluster expansion follows the standard DBSCAN 

breadth-first search strategy [32], but neighborhood queries are governed entirely by the 

Mumford–Shah regularized distance. This enables robust detection of spatially coherent regions 

while naturally rejecting noise pixels. 

3.3.3 Automatic Region Merging 

Although DBSCAN inherently avoids over-segmentation compared to centroid-based 

clustering, fine-grained partitions may still occur. To address this, an automatic post-processing 

stage merges adjacent clusters based on mean LAB color similarity. For two spatially adjacent 

clusters c₁ and c₂ with mean colors μ_c₁ and μ_c₂, merging is performed if:  

‖ μ_c₁ − μ_c₂ ‖₂ < τ_merge 

where τ_merge is a predefined color similarity threshold. 

This step improves region compactness while preserving perceptually meaningful 

boundaries, analogous to post-regularization in Mumford–Shah-based methods [20, 21]. 

3.3.4 Comparison with Classical DBSCAN 

Table 1 shows the results with different values of parameters like minimum points and EPS. 

Classical DBSCAN exhibits very high computational cost, increasing sharply with image size and 

high sensitivity to minimum points. The proposed Mumford–Shah Regularized DBSCAN along 

with achieving three to four orders of magnitude speedup, produces stable results across different 

minimum points.  
 

4. CONCLUSION 

Classical DBSCAN operates purely on feature density and lacks explicit spatial or boundary 

awareness. The proposed Mumford–Shah Regularized DBSCAN addresses this limitation by 

embedding spatial constraints and gradient-based penalties directly into the distance metric. The 

proposed method offers a practical and scalable alternative for high-quality image segmentation 

without the need for supervised training or expensive variational optimization. 

Future work will focus on extending the method to fully adaptive, locally varying ε and 

MinPts parameters driven by image statistics, enabling improved robustness across heterogeneous 

regions.  

Additional directions include multi-scale processing to better capture fine and coarse 

structures, and integration with superpixel or graph-based pre-processing to further reduce 

computational cost. Finally, quantitative evaluation against larger benchmark datasets with pixel-

level ground truth will be pursued. 
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Table 1: Runtime comparison of DBSCAN and Mumford–Shah Regularized DBSCAN 

Original 

 

 
Flower 

 

 
Dog 

Image size: 287 x 176 300 x 200 

DBSCAN 

Minpts = 120 

Eps = 18 

 

 

 
 

 

Time in 

milliseconds: 
58571 84692 

Minpts = 50 

Eps = 18 

 

 

 
 

 

Time in 

milliseconds: 
33941 69434 

MS 

DBSCAN 

MinPts = 20 

Eps = 0.12 

 

 

 
 

 

Time in 

milliseconds: 
16 26 

MinPts = 50 

Eps = 0.12 

 

 

 
 

 

Time in 

milliseconds: 
14 24 
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