
  
Volume 64 | Issue 12 | December 2025 

DOI: 10.5281/zenodo.18138841 

 

ISSN: 0363-8057 180 www.gradiva.it 

Voltage Stability Indices with Adaptive Interval Type-2 Fuzzy Logic 

Controller for Voltage Collapse Prediction in an ILL-Conditioned 

Power System 

 

O.F. Amakiri1*, J.N. Onah2 & G. Ofualagba3  
________________________________________________________________________________________________________________ 

1,2,3.Department of Electrical and Electronic Engineering, 

Federal University of Petroleum Resources (FUPRE), Effurun, Nigeria. 

 

Abstract 

Voltage instability remains a persistent challenge in modern power systems, especially in ill-

conditioned and heavily loaded networks such as Nigeria’s 72-bus 330 kV transmission grid. 

This study presents a hybrid predictive framework combining conventional Voltage Stability 

Indexes (VSIs) with an Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2FLC) to 

enhance voltage resilience and prevent system collapse. Traditional indexes—MVSI, Lmn, and 

VCPI—were applied to identify voltage vulnerabilities. Initial findings revealed weak buses 

with voltages as low as 0.87 p.u. and stability indexes below 0.80, indicating high collapse risk. 

After applying AIT2FLC, all critical metrics improved markedly. Weak buses showed an 

average voltage increase of 8.2%, with some buses like Bus 29 improving from 0.87 p.u. to 

0.98 p.u. Critical buses recorded a 6.5% average increase, with Bus 15 rising from 0.91 p.u. to 

1.02 p.u. Overall, the average voltage across weak buses improved from 0.93 p.u. to 1.01 p.u. 

and from 0.94 p.u. to 1.02 p.u. for critical buses. Furthermore, the MVSI average dropped from 

0.52 to 0.41, and the Lmn index improved from 0.45 to 0.38, indicating reduced system stress. 

Voltage deviation across the system fell by 63%, and the system stability score improved by 

23%, from 0.72 to 0.85. The percentage of buses within the ideal voltage range (0.95–1.05 p.u.) 

increased from 74% to 96%. These results underscore the effectiveness of AIT2FLC in real-

time control and its potential as a policy tool for preventive grid management. Adoption of 

such intelligent control frameworks by grid operators can drastically reduce the risk of voltage 

collapse and ensure a more stable, adaptive, and resilient power system. 

Keywords: MVSI, Fuzzy Logic Controller, Stabilization, Load, Bus. 

 

1. INTRODUCTION 

Voltage stability remains a critical aspect of power system operation, especially in large 

and complex electrical networks that are increasingly burdened by dynamic load variations, 

renewable energy penetration, and aging infrastructure. In regions where power systems 

operate under ill conditions—such as weak bus voltages, poor reactive power support, or 

system contingencies—the risk of voltage collapse becomes significantly higher [1,2,3]. For 

such vulnerable systems, like a 72-bus network under stress, the ability to predict and 

proactively manage voltage instability is essential to avoid widespread blackouts and ensure a 

resilient energy supply [2,3,4,5].  

Conventional methods for voltage stability assessment, such as modal analysis or 

continuation power flow, offer valuable insights but are often computationally intensive and 

less suited for real-time decision-making. This gap has led to the evolution of voltage stability 

indexes (VSIs), which serve as simplified numerical indicators that estimate how close a 

system is to experiencing voltage collapse [5,6,7,8]. These indices—such as Fast Voltage 
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Stability Index (FVSI), Line Stability Index (Lmn), and Voltage Collapse Proximity Indicator 

(VCPI)—allow for quicker identification of weak buses and critical contingencies. However, 

while effective in some scenarios, they often lack the adaptability required for modern grid 

conditions characterized by nonlinearity, uncertainty, and fluctuating load patterns [8,9,10]. To 

enhance the predictive accuracy of these indexes and incorporate intelligent control, this study 

introduces an Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2FLC) framework. Unlike 

traditional Type-1 fuzzy logic, which operates on crisp membership functions, the Type-2 

variant allows for uncertainty modeling within the fuzzy rules, enabling a more flexible and 

robust control scheme [34,36].  

The adaptive mechanism continuously updates the fuzzy rules based on real-time data, 

ensuring the system responds efficiently even under ill-conditioned scenarios [12,13, 37,38]. 

In essence, it creates a more “aware” system—one that understands and reacts to the complex, 

ever-changing dynamics of voltage behavior across all 72 buses. This research aims to combine 

the diagnostic clarity of voltage stability indexes with the intelligence and adaptability of 

AIT2FLC to develop a hybrid voltage collapse prediction model. By integrating data-driven 

learning, fuzzy reasoning, and system sensitivity monitoring, this approach promises a 

proactive solution that not only identifies vulnerability but actively engages in its mitigation 

[14,15,16]. The outcome is expected to be a marked improvement in voltage profile resilience, 

more accurate collapse forecasting, and better prioritization of corrective measures—especially 

for weak and critical buses that are often overlooked until it's too late [17,18,39]. 

 

2. LITERATURE REVIEW 

2.1. Factors Influencing Voltage Stability.  

The problem of voltage stability is strongly related to generation, transmission, and 

reactive power consumption [19]. Indeed, when large generation units drop out of service due 

to abnormal operating conditions or disturbances, the supplied reactive power is reduced and 

some transmission lines are heavily loaded.  

Thus, due to the additional reactive power demand, the load voltages decrease. The 

process eventually leads to voltage instability and voltage collapse. Figure 3 lists the various 

factors that affect voltage stability. The following are some of the few inherent factors that 

affect voltage stability [20,21,22,23]:  

a. The distance between the generating station and the load center determines the length of 

the transmission;  

b. An increase in an in-circuit transmission line causes multiple line failures to occur at 

higher speeds;  

c. The characteristics of the load, such as an increase in the type of load and its static and 

dynamic characteristics;  

d. The increase in the distance between the load and power generator increases the capacity 

of the transmission line;  

e. As the synchronous reactance rises, the transmission line power limit decreases, causing 

voltage instability;  

f. Practical tools for voltage stability include transformer tap adjustment, reactive power 

compensation, on-load tap changer. 



  
Volume 64 | Issue 12 | December 2025 

DOI: 10.5281/zenodo.18138841 

 

ISSN: 0363-8057 182 www.gradiva.it 

2.2. Voltage Stability Prediction.  

The prediction as well as the analysis of the voltage collapse phenomenon remains a 

critical challenge for operators and researchers. In this context, several studies and researchers 

have focused on presenting methodological approaches for the analysis [24,25,26]. &ese can 

be divided into two broad categories, namely, dynamic and static voltage stability analyses. &e 

dynamic analysis involves the dynamic elements associated with the generation, transmission, 

distribution, and load. It is characterized by its complexity in terms of calculation and data 

required. Static analysis, on the other hand, analyzes voltage stability generally based on load 

/ow analyses.  

It consists of a study of the equilibrium regime and allows us to identify the voltage levels 

and the power transits through all the buses and lines of the system [26,27,28]. Therefore, 

several studies in the literature have focused on the static model due to the simplicity of the 

analysis, the lower computational effort, and the accurate results offered, in addition to some 

practical advantages over the dynamic study [23,29]. Static analysis of voltage stability is a 

steady-state study that provides voltage levels and power transit across all buses and lines in 

the system. &e minimum singular value method and P-V, P-Q, and Q-V curves lead to the 

estimation of power system distance to voltage collapse, but no information about the reasons 

for the voltage stability problem is provided. &e continuation power /ow (CPF) method is 

characterized by its slowness.  

Additionally, the voltage stability indices play a key role in monitoring and estimating 

the stability margin of the power system. Dynamic analysis techniques are comparable to 

power system transient analyses, where the system is modeled by a variety of differential 

equations. The two primary categories of dynamic analysis are the method of large signal 

analysis and the method of small signal analysis [24,]. 

 

3. METHODS 

3.1: Evaluate voltage stability indexes in 72-bus ill-conditioned system 

3.1.1: Modern Voltage Stability Index (MVSI) 

MVSI estimates how close a line is to voltage instability. According to [11], If MVSI 

approaches 1, voltage collapse is imminent. It identifies weak buses by evaluating reactive load 

𝑄𝑗 sensitivity to line impedance. 

𝑀𝑉𝑆𝐼𝑖𝑗 =
4𝑍𝑖𝑗

2𝑄𝑗

𝑣𝑖
2𝑋𝑖𝑗

       (1) 

Parameters: 

𝑍𝑖𝑗: Impedance of the line between bus i and j, 𝑄𝑗: Reactive power at receiving bus j, 𝑉𝑖: 

Voltage magnitude at sending bus I and 𝑋𝑖𝑗: Line reactance between buses i and j 

3.1.2 Line Stability Index (Lmn) 

𝐿𝑚𝑖𝑛 quantifies stability margin based on voltage and reactive power. A high Lmn value 

implies a lower margin, highlighting critical lines or buses under stressed conditions 

[30,31,32,33]. 

𝐿𝑚𝑖𝑛 =
4𝑍𝑚𝑛

2 𝑄𝑛

𝑉𝑚
2 𝑐𝑜𝑠2(𝜃)

     (2) 
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Parameters: 

𝑍𝑚𝑛: Line impedance from bus mmm to n, 𝑄𝑛: Reactive load at bus n. 𝑉𝑚: Sending-end 

voltage, θ: Load angle 

3.1.3 Voltage Collapse Proximity Indicator (VCPI) 

VCPI tracks the voltage drop across a transmission line. A VCPI value nearing 1 

indicates a severe voltage drop, signaling voltage collapse risk as observed by [ 5]  

𝑉𝐶𝑃𝐼𝑚𝑛 =
𝑉𝑚−𝑉𝑛

𝑉𝑚
     (3) 

Parameters: 

𝑉𝑚: Voltage at sending bus m,  𝑉𝑛: Voltage at receiving bus n 

 

Figure 1: 72 Bus Network 
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3.2 Design of Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2FLC) 

3.2.1: Membership Function for IT2 Fuzzy Set 

This function defines the lower and upper bounds of uncertainty in the fuzzy 

membership. It helps capture the nonlinearity and data noise in ill-conditioned power systems 

[4]. 

𝜇𝐴(𝑥) = [𝜇𝐴(𝑥), 𝜇𝐴(𝑥)]     (4) 

Parameters: 

𝜇𝐴(𝑥): Type-2 fuzzy membership function,  𝜇𝐴(𝑥): Lower membership function, 𝜇
𝐴
(𝑥): 

Upper membership function, x: Input variable (e.g., voltage or load) 

3.2.2 Fuzzy Inference Output 

This equation calculates the centroid of the fuzzy output set, crucial for making control 

decisions. It balances all fuzzy rules using uncertainty-weighted average [5]. 

𝑦 =
∫ 𝑥.𝜇𝐴̃(𝑥)𝑑𝑥𝑥

∫ 𝜇𝐴̃(𝑥)𝑑𝑥𝑥

       (5) 

Parameters: 

y: Crisp output value, 𝜇𝐴̃(𝑥): Type-2 membership function, and x: Input domain 

3.3.3 Adaptation Rule 

Used for online learning, this gradient descent rule updates fuzzy controller parameters 

𝜃𝑘 to minimize prediction error E. 

∆𝜃𝑘 = −𝜂
𝜕𝐸

𝜕𝜃𝑘
       (6) 

Parameters: 

Δ𝜃𝑘: Parameter update, η: Learning rate, E: Error signal and 𝜃𝑘: Fuzzy rule or 

membership parameter 

3.3 Integration of VSIs with AIT2FLC 

3.3.1 Hybrid Stability Index 

This equation combines multiple stability indexes with weighted coefficients. It provides 

a unified, real-time metric for evaluating system stress and determining fuzzy control response 

[7]. 

𝐻𝑉𝐼 = 𝛼.𝑀𝑉𝑆𝐼 + 𝛽. 𝑉𝐶𝑃𝐼 + 𝛾. 𝐿𝑚𝑖𝑛   (7) 

Parameters: 

α, β, γ: Weighting factors (tuned via training or expert rules),  𝑀𝑉𝑆𝐼, 𝑉𝐶𝑃𝐼, 𝐿𝑚𝑖𝑛 : 

Individual stability indexes and HVI: Hybrid Voltage Index 

3.3.2 Fuzzy Control Output for Voltage Injection 

The controller determines the corrective voltage to inject using the hybrid index, fuzzy 

membership function, and rules r. It supports dynamic stabilization [8]. 

∆𝑉 = 𝑓(𝐻𝑉𝐼, 𝜇𝐴̃(𝑥), 𝑟)     (8) 
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Parameters: 

ΔV: Control output (voltage adjustment), HVI: Hybrid Voltage Index,  𝜇𝐴̃(𝑥): Interval 

Type-2 fuzzy input membership, r: Fuzzy rule base 

 

3.4 Validate the hybrid model under various scenarios 

3.4.1 Voltage Deviation Metric 

This summation computes total voltage deviation from the reference across all buses. 

Lower values post-controller activation indicates effectiveness of the hybrid approach [9]. 

𝑉𝐷 = ∑ |𝑉𝑖
𝑟𝑒𝑓

− 𝑉𝑖
𝑎𝑐𝑡𝑢𝑎𝑙|𝑁

𝑖=1      (9) 

Parameters: 

VD: Voltage deviation, 𝑉𝑖
𝑟𝑒𝑓

: Reference voltage (usually 1.0 p.u.), 𝑉𝑖
𝑎𝑐𝑡𝑢𝑎𝑙: Voltage after 

control and N: Total number of buses 

3.4.2 System Stability Score 

This normalized score assesses overall system stability based on total voltage deviation 

and total line loading. A higher score signifies improved performance under stress conditions 

[10]. 

𝑆 =
1

1+𝑉𝐷+𝜆.𝐿𝑡𝑜𝑡𝑎𝑙
      (10) 

Parameters: 

S: System stability score, VD: Voltage deviation, 𝐿𝑡𝑜𝑡𝑎𝑙: Total line load in the system 

and λ: Weighting factor for line stress. 

 

4. RESULTS AND DISCUSSIONS 

4.1 72 Bus VSI Stabilization Using AIT2 Fuzzy Logic Controller 

This analysis applies the Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2 FLC) 

to stabilize weak and critical buses whose MVSI values fall below 0.94 p.u. before 

improvement. 

Several buses—including Afam and Adiabor—had initial MVSI, LMM, and FVSI values 

ranging from 0.76 to 0.93 p.u., indicating instability. After standard system improvements, 

many indices rose modestly, some reaching up to 1.05 p.u. However, to ensure values remained 

within operational limits, the AIT2 FLC method was applied.  

This technique clamped all critical stability indices between 0.95 and 1.05 p.u., avoiding 

both under-voltage and overcompensation. For instance, a VLSI value of 0.88 p.u. improved 

to 1.03 p.u. but was stabilized to 1.00 p.u., ensuring it stayed within the defined secure band.  

Across all six indices—NLSI, LMM, LQP, FVSI, VLSI, and MVSI—the fuzzy logic 

method ensured uniformity and reliability, effectively flattening instability spikes while 

preserving optimized gains, as shown in the orange bar transitions as shown in figure 2. 
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Figure 4: 11 AIT2 FLC VSI Stabilization for 72 Bus System 

Table 2: Indexes Results Comparison 
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Afam 0.76 0.96 0.81 0.97 0.79 0.98 0.8 0.96 0.82 0.95 0.88 1 

Adiabor 0.78 0.95 0.82 0.96 0.83 0.97 0.84 0.95 0.85 0.96 0.89 0.99 

Kaduna 0.83 0.97 0.84 0.98 0.85 1 0.86 0.98 0.87 0.99 0.9 1.01 

Owerri 0.81 0.96 0.8 0.97 0.82 0.99 0.83 0.97 0.84 0.98 0.9 1.02 

Delta 0.84 0.98 0.85 0.99 0.86 1.01 0.85 1 0.87 1.01 0.9 1.02 

Ganmo 0.86 0.97 0.87 0.97 0.88 0.99 0.88 0.98 0.89 0.99 0.91 1 

Onitsha 0.79 0.96 0.81 0.97 0.83 0.98 0.84 0.96 0.85 0.96 0.88 1 

Eket 0.82 0.97 0.84 0.98 0.85 0.99 0.86 0.97 0.87 0.98 0.89 1.01 

Lokoja 0.77 0.95 0.79 0.96 0.8 0.97 0.82 0.95 0.83 0.96 0.87 1 

Calabar 0.8 0.96 0.83 0.97 0.84 0.98 0.85 0.96 0.86 0.97 0.89 1 

Jos 0.83 0.97 0.84 0.98 0.86 0.99 0.87 0.97 0.88 0.98 0.9 1.01 

Benin 0.81 0.96 0.82 0.97 0.83 0.98 0.84 0.96 0.85 0.97 0.88 1 

Sokoto 0.76 0.95 0.78 0.96 0.8 0.97 0.81 0.95 0.82 0.96 0.86 0.99 

Makurdi 0.85 0.98 0.86 0.99 0.87 1 0.88 0.99 0.89 1 0.9 1.02 

Ajaokuta 0.8 0.96 0.81 0.97 0.82 0.98 0.84 0.96 0.85 0.97 0.88 1 

Abeokuta 0.79 0.96 0.8 0.97 0.81 0.98 0.83 0.96 0.84 0.97 0.87 1 

Bauchi 0.78 0.95 0.79 0.96 0.8 0.97 0.82 0.95 0.83 0.96 0.86 0.99 

Yola 0.82 0.97 0.83 0.98 0.85 0.99 0.86 0.97 0.87 0.98 0.9 1.01 

Ogbomosho 0.81 0.96 0.82 0.97 0.83 0.98 0.85 0.96 0.86 0.97 0.88 1 

Minna 0.77 0.95 0.79 0.96 0.81 0.97 0.82 0.95 0.83 0.96 0.86 0.99 

Okene 0.84 0.97 0.85 0.98 0.86 0.99 0.87 0.97 0.88 0.98 0.9 1.01 

Ilorin 0.82 0.96 0.83 0.97 0.84 0.98 0.85 0.96 0.86 0.97 0.89 1 

Iseyin 0.8 0.96 0.81 0.97 0.83 0.98 0.84 0.96 0.85 0.97 0.88 1 

Oyo 0.76 0.95 0.78 0.96 0.8 0.97 0.81 0.95 0.82 0.96 0.85 0.99 

Ikorodu 0.83 0.97 0.84 0.98 0.85 0.99 0.86 0.97 0.87 0.98 0.9 1.01 
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4.2 System Voltage Profile  

The initial voltage profile shows significant instability, with buses ranging from 0.87 pu 

to 1.13 pu across the 72-bus system. After stabilization, all voltages were successfully brought 

within the safe 0.95-1.05 pu range. The most dramatic improvements occurred at buses 18, 29, 

and 42, which were originally operating at critically low voltages below 0.90 pu. The 

stabilization process maintained the healthy voltages while correcting the outliers, 

demonstrating effective system-wide voltage control as shown in figure 3. 

 

Figure 3: Voltage Stabilization Profile: Before and After Stabilization 

4.3 Weak Bus Correction 

Weak bus correction of the 72 buses, 14 were identified as weak with voltages below 

0.95 p.u. The stabilization raised these buses by an average of 8.2%, with the most significant 

correction at bus 29 which improved from 0.87 pu to 0.98 pu. All weak buses now operate 

safely above the 0.95 pu threshold, with the average stabilized voltage reaching 1.01 pu across 

this group as shown in figure 4. 

 

Figure 4: Weak Buses Stabilization 
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4.4 Critical Bus Enhancement  

Five critical buses showed high MVSI values above 0.85, indicating severe instability 

risk. These buses were given priority treatment, resulting in an average voltage improvement 

of 6.5%. Bus 15 showed the most notable change, increasing from 0.91 pu to 1.02 pu while 

maintaining smooth integration with surrounding buses as shown in figure 5. 

 

Figure 5: Critical Buses Stabilization 

4.5 Improvement Percentage 

Voltage improvements ranged from 4.8% to 12.6% across different buses, with weak 

buses averaging 8.2% gain and critical buses showing 6.5% improvement. The most responsive 

bus was number 37, which showed a 12.6% increase from its original 0.88 pu value to a 

stabilized 0.99 pu as shown in figure 6. 

 

Figure 6: Voltage Improvement Percentage 
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4.6 Line Stability Analysis  

The MVSI analysis revealed line 15-29 as the most critical with an index of 0.92, well 

above the 0.8 danger threshold. After stabilization, this value dropped to 0.73. The average 

MVSI across all lines improved from 0.52 to 0.41, indicating significantly reduced system-

wide instability risk as shown in figure 7. 

 

Figure 7: MVSI for Transmission Line 

4.7 Stability Margin Distribution 

The Lmn index shows 68% of lines operating with comfortable margins below 0.4, while 

12% exceeded 0.7 indicating vulnerability. Post-stabilization, the high-risk category reduced 

to just 5% of lines, with the average Lmn improving from 0.45 to 0.38 across the network. 

 

Figure 8: Lmn Index Distribution 
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4.8 Voltage Drop Analysis 

The VCPI heat map reveals severe voltage drops up to 18% on certain lines before 

stabilization. After corrective measures, the maximum drop reduced to 9%, with 92% of lines 

now showing drops less than 5%, well within acceptable operational limits as shown in figure 

9. 

 

Figure 9: VCPI Heatmap 

4.9 Control System Design  

The interval type-2 fuzzy membership functions were tuned to specifically handle the 

0.85-1.15 pu voltage range observed in this ill-conditioned system. The overlapping upper and 

lower membership functions create a robust bandwidth of 0.05-0.1 p.u to account for 

measurement uncertainties as shown in figure 10. 

 

Figure 10: Interval Tye 2 Membership Function 
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4.10 Control Response 

The fuzzy control surface shows smooth, nonlinear response characteristics, capable of 

delivering up to ±0.18 pu voltage adjustments when needed. The steepest response occurs in 

the 0.90-0.95 pu danger zone, providing aggressive correction when voltages approach 

instability thresholds as shown in Figure 11. 

 

Figure 11: Fuzzy Control Surface 

4.11 Deviation from Reference 

Total voltage deviation across the system reduced by 63% after stabilization, from an 

average of 0.082 pu per bus to just 0.030 pu. The maximum individual bus deviation improved 

from 0.15 pu to 0.06 pu, demonstrating significantly tighter voltage regulation as shown in 

figure 12. 

 

Figure 12: Voltage Deviation from Reference 
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4.12 System Stability Score 

The composite stability score improved from an average of 0.72 to 0.85 across all buses, 

with the lowest scoring bus improving from 0.58 to 0.79. This 23% average increase confirms 

substantially enhanced system reliability after stabilization measures as shown in figure 13. 

 

Figure 13: System Stability Score 

4.13 Compliance Statistics 

Violations of voltage limits reduced from 19 buses (26% of system) to just 3 buses (4%). 

The remaining violations are within 0.02 pu of limits and could be addressed with minor 

additional tuning of the control system as shown in figure 14. 

 

Figure 14: Voltage Limit Compliance 
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4.14 Voltage Distribution 

The histogram shows the dramatic concentration of buses within the ideal 0.95-1.05 p.u 

range after stabilization, increasing from 53 buses (74%) to 69 buses (96%). The long tails of 

the initial distribution completely disappeared, confirming effective elimination of both under-

voltage and overvoltage conditions as shown in figure 15. 

 

Figure 15: Voltage Distribution Before and After Stabilization 

4.15 Performance Summary 

Average voltages improved from 0.93 p. u to 1.01 p. u for weak buses and from 0.94 p.u 

to 1.02 p.u for critical buses. The stabilization system achieved these results while maintaining 

natural voltage gradients across the network, avoiding artificial flattening that could mask 

underlying system issues as shown in figure 16. 

 

Figure 16: Stabilization Performance 
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CONCLUSIONS 

The study concludes that the integration of Adaptive Interval Type-2 Fuzzy Logic 

Control (AIT2FLC) with traditional voltage stability indices offers a significant advancement 

in the proactive management of voltage instability in ill-conditioned power systems, 

particularly within Nigeria’s 72-bus transmission network. By leveraging the flexibility and 

uncertainty-handling capabilities of interval type-2 fuzzy logic, the system was able to 

accurately respond to fluctuating conditions and nonlinearity, which conventional tools often 

fail to address in real-time. The voltage stability indices—MVSI, Lmn, and VCPI—proved 

effective in identifying weak and critical buses, but it was the hybrid integration with AIT2FLC 

that ensured sustained voltage regulation across all buses.  

Quantitative analysis demonstrated notable improvements: weak buses experienced an 

average voltage increase of 8.2%, while critical buses improved by 6.5%, with the most 

extreme corrections bringing voltage levels from as low as 0.87 p.u. to within the acceptable 

0.95–1.05 p.u. range. The hybrid model significantly reduced the average MVSI from 0.52 to 

0.41, enhanced the Lmn index from 0.45 to 0.38, and improved the system’s composite stability 

score from 0.72 to 0.85. Additionally, the total system voltage deviation dropped by 63%, and 

compliance with voltage limits increased from 74% to 96% of the buses. These outcomes 

affirm that intelligent fuzzy control not only improves system stability but also ensures that 

both under-voltage and overvoltage conditions are minimized without compromising the 

natural voltage gradient of the grid. Ultimately, the research validates AIT2FLC as a viable 

solution for real-time grid control, offering an adaptive, data-driven strategy to support policy 

efforts aimed at enhancing national grid resilience and operational efficiency in the face of 

growing demand and system unpredictability. 
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