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Abstract

Voltage instability remains a persistent challenge in modern power systems, especially in ill-
conditioned and heavily loaded networks such as Nigeria’s 72-bus 330 kV transmission grid.
This study presents a hybrid predictive framework combining conventional Voltage Stability
Indexes (VSIs) with an Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2FLC) to
enhance voltage resilience and prevent system collapse. Traditional indexes—MVSI, Lmn, and
VVCPIl—were applied to identify voltage vulnerabilities. Initial findings revealed weak buses
with voltages as low as 0.87 p.u. and stability indexes below 0.80, indicating high collapse risk.
After applying AIT2FLC, all critical metrics improved markedly. Weak buses showed an
average voltage increase of 8.2%, with some buses like Bus 29 improving from 0.87 p.u. to
0.98 p.u. Critical buses recorded a 6.5% average increase, with Bus 15 rising from 0.91 p.u. to
1.02 p.u. Overall, the average voltage across weak buses improved from 0.93 p.u. to 1.01 p.u.
and from 0.94 p.u. to 1.02 p.u. for critical buses. Furthermore, the MVSI average dropped from
0.52 t0 0.41, and the Lmn index improved from 0.45 to 0.38, indicating reduced system stress.
Voltage deviation across the system fell by 63%, and the system stability score improved by
23%, from 0.72 to 0.85. The percentage of buses within the ideal voltage range (0.95-1.05 p.u.)
increased from 74% to 96%. These results underscore the effectiveness of AIT2FLC in real-
time control and its potential as a policy tool for preventive grid management. Adoption of
such intelligent control frameworks by grid operators can drastically reduce the risk of voltage
collapse and ensure a more stable, adaptive, and resilient power system.
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1. INTRODUCTION

Voltage stability remains a critical aspect of power system operation, especially in large
and complex electrical networks that are increasingly burdened by dynamic load variations,
renewable energy penetration, and aging infrastructure. In regions where power systems
operate under ill conditions—such as weak bus voltages, poor reactive power support, or
system contingencies—the risk of voltage collapse becomes significantly higher [1,2,3]. For
such vulnerable systems, like a 72-bus network under stress, the ability to predict and
proactively manage voltage instability is essential to avoid widespread blackouts and ensure a
resilient energy supply [2,3,4,5].

Conventional methods for voltage stability assessment, such as modal analysis or
continuation power flow, offer valuable insights but are often computationally intensive and
less suited for real-time decision-making. This gap has led to the evolution of voltage stability
indexes (VSIs), which serve as simplified numerical indicators that estimate how close a
system is to experiencing voltage collapse [5,6,7,8]. These indices—such as Fast Voltage
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Stability Index (FVSI), Line Stability Index (Lmn), and VVoltage Collapse Proximity Indicator
(VCPI)—allow for quicker identification of weak buses and critical contingencies. However,
while effective in some scenarios, they often lack the adaptability required for modern grid
conditions characterized by nonlinearity, uncertainty, and fluctuating load patterns [8,9,10]. To
enhance the predictive accuracy of these indexes and incorporate intelligent control, this study
introduces an Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2FLC) framework. Unlike
traditional Type-1 fuzzy logic, which operates on crisp membership functions, the Type-2
variant allows for uncertainty modeling within the fuzzy rules, enabling a more flexible and
robust control scheme [34,36].

The adaptive mechanism continuously updates the fuzzy rules based on real-time data,
ensuring the system responds efficiently even under ill-conditioned scenarios [12,13, 37,38].
In essence, it creates a more “aware” system—one that understands and reacts to the complex,
ever-changing dynamics of voltage behavior across all 72 buses. This research aims to combine
the diagnostic clarity of voltage stability indexes with the intelligence and adaptability of
AIT2FLC to develop a hybrid voltage collapse prediction model. By integrating data-driven
learning, fuzzy reasoning, and system sensitivity monitoring, this approach promises a
proactive solution that not only identifies vulnerability but actively engages in its mitigation
[14,15,16]. The outcome is expected to be a marked improvement in voltage profile resilience,
more accurate collapse forecasting, and better prioritization of corrective measures—especially
for weak and critical buses that are often overlooked until it's too late [17,18,39].

2. LITERATURE REVIEW
2.1. Factors Influencing Voltage Stability.

The problem of voltage stability is strongly related to generation, transmission, and
reactive power consumption [19]. Indeed, when large generation units drop out of service due
to abnormal operating conditions or disturbances, the supplied reactive power is reduced and
some transmission lines are heavily loaded.

Thus, due to the additional reactive power demand, the load voltages decrease. The
process eventually leads to voltage instability and voltage collapse. Figure 3 lists the various
factors that affect voltage stability. The following are some of the few inherent factors that
affect voltage stability [20,21,22,23]:

a. The distance between the generating station and the load center determines the length of
the transmission;

b. An increase in an in-circuit transmission line causes multiple line failures to occur at
higher speeds;

c. The characteristics of the load, such as an increase in the type of load and its static and
dynamic characteristics;

d. The increase in the distance between the load and power generator increases the capacity
of the transmission line;

e. As the synchronous reactance rises, the transmission line power limit decreases, causing
voltage instability;

f. Practical tools for voltage stability include transformer tap adjustment, reactive power
compensation, on-load tap changer.
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2.2. Voltage Stability Prediction.

The prediction as well as the analysis of the voltage collapse phenomenon remains a
critical challenge for operators and researchers. In this context, several studies and researchers
have focused on presenting methodological approaches for the analysis [24,25,26]. &ese can
be divided into two broad categories, namely, dynamic and static voltage stability analyses. &e
dynamic analysis involves the dynamic elements associated with the generation, transmission,
distribution, and load. It is characterized by its complexity in terms of calculation and data
required. Static analysis, on the other hand, analyzes voltage stability generally based on load
/ow analyses.

It consists of a study of the equilibrium regime and allows us to identify the voltage levels
and the power transits through all the buses and lines of the system [26,27,28]. Therefore,
several studies in the literature have focused on the static model due to the simplicity of the
analysis, the lower computational effort, and the accurate results offered, in addition to some
practical advantages over the dynamic study [23,29]. Static analysis of voltage stability is a
steady-state study that provides voltage levels and power transit across all buses and lines in
the system. &e minimum singular value method and P-V, P-Q, and Q-V curves lead to the
estimation of power system distance to voltage collapse, but no information about the reasons
for the voltage stability problem is provided. &e continuation power /ow (CPF) method is
characterized by its slowness.

Additionally, the voltage stability indices play a key role in monitoring and estimating
the stability margin of the power system. Dynamic analysis techniques are comparable to
power system transient analyses, where the system is modeled by a variety of differential
equations. The two primary categories of dynamic analysis are the method of large signal
analysis and the method of small signal analysis [24,].

3. METHODS
3.1: Evaluate voltage stability indexes in 72-bus ill-conditioned system

3.1.1: Modern Voltage Stability Index (MVSI)

MVSI estimates how close a line is to voltage instability. According to [11], If MVSI
approaches 1, voltage collapse is imminent. It identifies weak buses by evaluating reactive load
Q; sensitivity to line impedance.

2
4Zi;Q5

Uiinj
Parameters:

Z;;- Impedance of the line between bus i and j, Q;: Reactive power at receiving bus j, V;:
Voltage magnitude at sending bus I and X;;: Line reactance between buses i and j

3.1.2 Line Stability Index (Lmn)

L..in quantifies stability margin based on voltage and reactive power. A high Lmn value
implies a lower margin, highlighting critical lines or buses under stressed conditions
[30,31,32,33].

42727177. n
— 4ZmnQn_ )

L. =
mn - y2 cos2(9)
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Parameters:

Zmn- Line impedance from bus mmm to n, Q,,: Reactive load at bus n. V},,: Sending-end
voltage, 0: Load angle

3.1.3 Voltage Collapse Proximity Indicator (VCPI)

VCPI tracks the voltage drop across a transmission line. A VCPI value nearing 1
indicates a severe voltage drop, signaling voltage collapse risk as observed by [ 5]

VCPlyy, = V";;V" 3)

Parameters:
.. Voltage at sending bus m, 1;,: Voltage at receiving bus n
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Figure 1: 72 Bus Network
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3.2 Design of Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2FLC)
3.2.1: Membership Function for 1T2 Fuzzy Set

This function defines the lower and upper bounds of uncertainty in the fuzzy
membership. It helps capture the nonlinearity and data noise in ill-conditioned power systems

[4].
fia(x) = [EA(x);ﬁA(x)] 4)
Parameters:

fa(x): Type-2 fuzzy membership function, Ha (x): Lower membership function, 1, (x):
Upper membership function, x: Input variable (e.g., voltage or load)

3.2.2 Fuzzy Inference Output

This equation calculates the centroid of the fuzzy output set, crucial for making control
decisions. It balances all fuzzy rules using uncertainty-weighted average [5].

x.u5(x)dx
- fjf; ul;za(c)ix ©)
Parameters:
y: Crisp output value, uz(x): Type-2 membership function, and x: Input domain
3.3.3 Adaptation Rule

Used for online learning, this gradient descent rule updates fuzzy controller parameters
), to minimize prediction error E.

AB, = —n 20, (6)

Parameters:

ABy: Parameter update, n: Learning rate, E: Error signal and 6,: Fuzzy rule or
membership parameter

3.3 Integration of VSIs with AIT2FLC
3.3.1 Hybrid Stability Index

This equation combines multiple stability indexes with weighted coefficients. It provides
a unified, real-time metric for evaluating system stress and determining fuzzy control response

[7].
HVI = a.MVSI + B.VCPI + . L (7)
Parameters:

a, B, y: Weighting factors (tuned via training or expert rules), MVSI,VCPI, Ly -
Individual stability indexes and HVI: Hybrid Voltage Index

3.3.2 Fuzzy Control Output for Voltage Injection

The controller determines the corrective voltage to inject using the hybrid index, fuzzy
membership function, and rules r. It supports dynamic stabilization [8].

AV = f(HVI, pz(x),7) (8)
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Parameters:

AV: Control output (voltage adjustment), HVI: Hybrid Voltage Index, pz(x): Interval
Type-2 fuzzy input membership, r: Fuzzy rule base

3.4 Validate the hybrid model under various scenarios
3.4.1 Voltage Deviation Metric

This summation computes total voltage deviation from the reference across all buses.
Lower values post-controller activation indicates effectiveness of the hybrid approach [9].

VD = Zévzl |Viref _ Viactuall (9)
Parameters:

VD: Voltage deviation, Viref : Reference voltage (usually 1.0 p.u.), V;#t#at: Voltage after
control and N: Total number of buses

3.4.2 System Stability Score

This normalized score assesses overall system stability based on total voltage deviation
and total line loading. A higher score signifies improved performance under stress conditions
[10].

1

S=—1 (10)

T 14VD+ALotar
Parameters:

S: System stability score, VD: Voltage deviation, L;,.q;: Total line load in the system
and A: Weighting factor for line stress.

4. RESULTS AND DISCUSSIONS
4.1 72 Bus VSI Stabilization Using AIT2 Fuzzy Logic Controller

This analysis applies the Adaptive Interval Type-2 Fuzzy Logic Controller (AIT2 FLC)
to stabilize weak and critical buses whose MVSI values fall below 0.94 p.u. before
improvement.

Several buses—including Afam and Adiabor—had initial MVSI, LMM, and FVSI values
ranging from 0.76 to 0.93 p.u., indicating instability. After standard system improvements,
many indices rose modestly, some reaching up to 1.05 p.u. However, to ensure values remained
within operational limits, the AIT2 FLC method was applied.

This technique clamped all critical stability indices between 0.95 and 1.05 p.u., avoiding
both under-voltage and overcompensation. For instance, a VLSI value of 0.88 p.u. improved
to 1.03 p.u. but was stabilized to 1.00 p.u., ensuring it stayed within the defined secure band.

Across all six indices—NLSI, LMM, LQP, FVSI, VLSI, and MVSI—the fuzzy logic
method ensured uniformity and reliability, effectively flattening instability spikes while
preserving optimized gains, as shown in the orange bar transitions as shown in figure 2.
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AIT2 FLC Stabilization: Weak & Critical Buses (All < 1.05 p.u.)

LMM: AITZELC Stabllm
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Figure 4: 11 AIT2 FLC VSI Stabilization for 72 Bus System
Table 2: Indexes Results Comparison
® -_ _— [5) o D) _ 5 N - @ _— T - -_
2E |25/23 25|22 25|22 355|858 35|98 85|98
°2 |3g/593g/3%cg g g IYzg =558 5%
Afam 0.76 | 0.96 | 0.81 | 0.97 | 0.79 [ 098 | 0.8 [ 096 ] 0.82 | 095 0.88 | 1
Adiabor 0.78 | 0.95 | 0.82 | 0.96 | 0.83 [ 0.97 [ 0.84 [ 0.95| 0.85 | 0.96 | 0.89 | 0.99
Kaduna 0.83 [ 097 | 0.84 | 098 | 085 | 1 [ 086 098] 0.87 |099]| 09 |101
Owerri 0.81 [0.96 | 08 |097 | 082 [0.99 [ 083 097|084 098] 09 |102
Delta 0.84 [ 0.98 | 0.85 | 099 | 086 [1.01[ 085 | 1 | 0.87 |1.01| 09 | 102
Ganmo 0.86 | 0.97 | 0.87 | 0.97 | 0.88 [ 0.99 | 0.88 [ 0.98 | 0.89 | 0.99 | 0.91 | 1
Onitsha 0.79 | 0.96 | 0.81 | 0.97 | 0.83 [ 0.98 | 0.84 [ 0.96 | 0.85 | 0.96 | 0.88 | 1
Eket 0.82 [ 097 | 0.84 | 0.98 | 0.85 | 0.99 | 0.86 [ 0.97 | 0.87 [ 0.98 | 0.89 | 1.01
Lokoja 0.77 | 095 ] 079 | 096 | 08 | 097 ] 082 [095]| 0.83 [0.96| 087 | 1
Calabar 0.8 [0.96]083[097]084|098[085]096]|086[097|089 | 1
Jos 0.83 [ 097 | 0.84 | 0.98 | 0.86 | 0.99 | 0.87 [ 0.97 | 0.88 [ 0.98 | 0.9 | 1.01
Benin 0.81 [ 0.96 | 0.82 | 0.97 [ 0.83 | 0.98 | 084 [ 0.96 | 0.85 [ 0.97 | 0.88 | 1
Sokoto 0.76 | 095 ] 0.78 | 0.96 | 0.8 |[0.97 | 0.81 [ 0.95 | 0.82 [ 0.96 | 0.86 | 0.99
Makurdi 0.85 | 0.98 | 0.86 | 099 | 0.87 | 1 | 0.88 [099 | 089 | 1 | 09 |1.02
Ajaokuta 0.8 [096]081[097]082 098|084 096|085 [097 |08 1
Abeokuta | 0.79 [ 0.96 | 0.8 [0.97 | 0.81 | 0.98 [ 0.83 | 0.96 | 084 [ 097 | 0.87 | 1
Bauchi 0.78 [ 0.95 | 0.79 | 0.96 | 0.8 | 0.97 | 0.82 | 0.95| 0.83 | 0.96 | 0.86 | 0.99
Yola 0.82 | 0.97 | 0.83 | 0.98 | 0.85 [ 0.99 | 0.86 | 0.97 | 0.87 | 0.98 | 0.9 | 1.01
Ogbomosho | 0.81 | 0.96 | 0.82 [ 0.97 | 0.83 | 0.98 | 0.85 | 0.96 | 0.86 | 0.97 | 0.88 | 1
Minna 0.77 [ 095 ] 0.79 | 0.96 | 0.81 | 0.97 | 0.82 [ 0.95 | 0.83 [ 0.96 | 0.86 | 0.99
Okene 0.84 [ 0.97 | 0.85 | 0.98 | 0.86 | 0.99 | 0.87 | 0.97 | 0.88 | 0.98 | 0.9 | 1.01
llorin 0.82 | 0.96 | 0.83 | 0.97 | 0.84 [ 0.98 | 0.85 [ 0.96 | 0.86 | 0.97 | 0.89 | 1
Iseyin 08 | 096|081 097|083 |098| 084 |096]| 085 097|088 | 1
Oyo 0.76 | 0.95 | 0.78 | 0.96 | 0.8 |[0.97 | 0.81 | 0.95 | 0.82 | 0.96 | 0.85 | 0.99
Ikorodu 0.83 | 0.97 | 0.84 | 0.98 | 0.85 | 0.99 | 0.86 | 0.97 | 0.87 | 0.98 | 0.9 | 1.01
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4.2 System Voltage Profile

The initial voltage profile shows significant instability, with buses ranging from 0.87 pu
to 1.13 pu across the 72-bus system. After stabilization, all voltages were successfully brought
within the safe 0.95-1.05 pu range. The most dramatic improvements occurred at buses 18, 29,
and 42, which were originally operating at critically low voltages below 0.90 pu. The
stabilization process maintained the healthy voltages while correcting the outliers,
demonstrating effective system-wide voltage control as shown in figure 3.

Voltage Profile: Before vs After Stabilization
T T T T T

Voltage (pu)

—e— Initial

Stabilized

— =— = Stability Limits
T

I L 1 L L L
[0} 10 20 30 40 50 60 70 80
Bus Number

Figure 3: Voltage Stabilization Profile: Before and After Stabilization

4.3 Weak Bus Correction

Weak bus correction of the 72 buses, 14 were identified as weak with voltages below
0.95 p.u. The stabilization raised these buses by an average of 8.2%, with the most significant
correction at bus 29 which improved from 0.87 pu to 0.98 pu. All weak buses now operate
safely above the 0.95 pu threshold, with the average stabilized voltage reaching 1.01 pu across

this group as shown in figure 4.

Weak Buses Stabilization (V < 0.95 pu)
T T T

L L I
10 20 30 40 50 60 70
Bus Number

Figure 4: Weak Buses Stabilization
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4.4 Critical Bus Enhancement

Five critical buses showed high MVSI values above 0.85, indicating severe instability
risk. These buses were given priority treatment, resulting in an average voltage improvement
of 6.5%. Bus 15 showed the most notable change, increasing from 0.91 pu to 1.02 pu while
maintaining smooth integration with surrounding buses as shown in figure 5.

11 Critical Buses Stabilization (High MVSI)
. T T T T

I nitial
I stabilized

1.08 -

1.06 — =1

1.04

1.02

Voltage (pu)

0.98

0.96 [

0.94

0.92 H

0.9 - —
1112 333435 54 5657 59

Bus Number

Figure 5: Critical Buses Stabilization
4.5 Improvement Percentage

Voltage improvements ranged from 4.8% to 12.6% across different buses, with weak
buses averaging 8.2% gain and critical buses showing 6.5% improvement. The most responsive
bus was number 37, which showed a 12.6% increase from its original 0.88 pu value to a
stabilized 0.99 pu as shown in figure 6.

Voltage Improvement Percentage
T T T

25 T T T T

—©— Weak Buses
—8— Critical Buses

20 - -

Improvement (%)
(&)
T
1

15 1 1 L 1 1 L 1
0 10 20 30 40 50 60 70 80

Bus Number

Figure 6: Voltage Improvement Percentage
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4.6 Line Stability Analysis

The MVSI analysis revealed line 15-29 as the most critical with an index of 0.92, well
above the 0.8 danger threshold. After stabilization, this value dropped to 0.73. The average
MVSI across all lines improved from 0.52 to 0.41, indicating significantly reduced system-
wide instability risk as shown in figure 7.

MVSI for Transmission Lines
1000 T T T

T T
L o) oo
900 2 o o
o
800 [~
P e}
o
700 o @8 og @B g

600

MVSI

500

90 © qp,

400

336 g@
D

300 °©

200

Il
0 100 200 300 400 500 600 700 800 900
Line Index

Figure 7: MVSI for Transmission Line
4.7 Stability Margin Distribution
The Lmn index shows 68% of lines operating with comfortable margins below 0.4, while

12% exceeded 0.7 indicating vulnerability. Post-stabilization, the high-risk category reduced
to just 5% of lines, with the average Lmn improving from 0.45 to 0.38 across the network.

Lmn Index Distribution

45

40

35

30

N
3}

Frequency

20

1000 1500 2000 2500 3000 3500
Lmn Value

Figure 8: Lmn Index Distribution
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4.8 Voltage Drop Analysis

The VCPI heat map reveals severe voltage drops up to 18% on certain lines before
stabilization. After corrective measures, the maximum drop reduced to 9%, with 92% of lines
now showing drops less than 5%, well within acceptable operational limits as shown in figure
9.

VCPI Heatmap

10 -
20 -
30 -
40 -
50 -0.
60
70 e
10 20 30 40 50 60 70

Receiving Bus

Sending Bus

Figure 9: VCPI Heatmap

4.9 Control System Design

The interval type-2 fuzzy membership functions were tuned to specifically handle the
0.85-1.15 pu voltage range observed in this ill-conditioned system. The overlapping upper and
lower membership functions create a robust bandwidth of 0.05-0.1 p.u to account for
measurement uncertainties as shown in figure 10.

Interval Type-2 Membership Functions
T

Lower MF
Upper MF

Membership

Voltage (pu)

Figure 10: Interval Tye 2 Membership Function
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4.10 Control Response

The fuzzy control surface shows smooth, nonlinear response characteristics, capable of
delivering up to £0.18 pu voltage adjustments when needed. The steepest response occurs in
the 0.90-0.95 pu danger zone, providing aggressive correction when voltages approach
instability thresholds as shown in Figure 11.

Fuzzy Control Surface

Figure 11: Fuzzy Control Surface

4.11 Deviation from Reference

Total voltage deviation across the system reduced by 63% after stabilization, from an
average of 0.082 pu per bus to just 0.030 pu. The maximum individual bus deviation improved
from 0.15 pu to 0.06 pu, demonstrating significantly tighter voltage regulation as shown in
figure 12.

Voltage Deviation from Reference
T T T

0.15 T T

ref Vi

v

(o] 10 20 30 40 50 60 70
Bus Number

Figure 12: Voltage Deviation from Reference
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4.12 System Stability Score

The composite stability score improved from an average of 0.72 to 0.85 across all buses,
with the lowest scoring bus improving from 0.58 to 0.79. This 23% average increase confirms
substantially enhanced system reliability after stabilization measures as shown in figure 13.

<10
m

System Stability Score
T T T

Score

[} 10 20 30 40 50 60 70
Bus Number

Figure 13: System Stability Score
4.13 Compliance Statistics

Violations of voltage limits reduced from 19 buses (26% of system) to just 3 buses (4%).
The remaining violations are within 0.02 pu of limits and could be addressed with minor
additional tuning of the control system as shown in figure 14.

Voltage Limit Compliance
T

80
I initial
I stabilized

70 |-

50 |-

Number of Buses
N
o
T

30 [~

20 |-

Out of Limits Within Limits

Figure 14: Voltage Limit Compliance
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4.14 Voltage Distribution

The histogram shows the dramatic concentration of buses within the ideal 0.95-1.05 p.u
range after stabilization, increasing from 53 buses (74%) to 69 buses (96%). The long tails of
the initial distribution completely disappeared, confirming effective elimination of both under-
voltage and overvoltage conditions as shown in figure 15.

Voltage Distribution Before/After Stabilization
T T T T

Number of Buses

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
Voltage (pu)

Figure 15: Voltage Distribution Before and After Stabilization

4.15 Performance Summary

Average voltages improved from 0.93 p. u to 1.01 p. u for weak buses and from 0.94 p.u
to 1.02 p.u for critical buses. The stabilization system achieved these results while maintaining
natural voltage gradients across the network, avoiding artificial flattening that could mask
underlying system issues as shown in figure 16.

Stabilization Performance

0.999

Average Voltage (pu)

Weak Buses Critical Buses

Figure 16: Stabilization Performance
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CONCLUSIONS

The study concludes that the integration of Adaptive Interval Type-2 Fuzzy Logic
Control (AIT2FLC) with traditional voltage stability indices offers a significant advancement
in the proactive management of voltage instability in ill-conditioned power systems,
particularly within Nigeria’s 72-bus transmission network. By leveraging the flexibility and
uncertainty-handling capabilities of interval type-2 fuzzy logic, the system was able to
accurately respond to fluctuating conditions and nonlinearity, which conventional tools often
fail to address in real-time. The voltage stability indices—MVSI, Lmn, and VCPI—proved
effective in identifying weak and critical buses, but it was the hybrid integration with AIT2FLC
that ensured sustained voltage regulation across all buses.

Quantitative analysis demonstrated notable improvements: weak buses experienced an
average voltage increase of 8.2%, while critical buses improved by 6.5%, with the most
extreme corrections bringing voltage levels from as low as 0.87 p.u. to within the acceptable
0.95-1.05 p.u. range. The hybrid model significantly reduced the average MVSI from 0.52 to
0.41, enhanced the Lmn index from 0.45 to 0.38, and improved the system’s composite stability
score from 0.72 to 0.85. Additionally, the total system voltage deviation dropped by 63%, and
compliance with voltage limits increased from 74% to 96% of the buses. These outcomes
affirm that intelligent fuzzy control not only improves system stability but also ensures that
both under-voltage and overvoltage conditions are minimized without compromising the
natural voltage gradient of the grid. Ultimately, the research validates AIT2FLC as a viable
solution for real-time grid control, offering an adaptive, data-driven strategy to support policy
efforts aimed at enhancing national grid resilience and operational efficiency in the face of
growing demand and system unpredictability.
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