
  
Volume 63 | Issue 05 | May 2024 
DOI: 10.5281/zenodo.11630281  

 

ISSN: 0363-8057 170 www.gradiva.it 

On the Thermal Behavior Response of Laminated Composite Plates 

via FEM 

 

SEHOUL Mohammed 1*, BENDAHANE Khaled 2*, BOUGUENINA Otbi 3* and SEHOUL Baghdad 4  
________________________________________________________________________________________________________________ 

1,2,3. Department of Technology, Nour Bachir El-Bayadh University Center, 

BP 900 route Aflou, 32000 El Bayadh, Algeria. 

1,4. Laboratory of Electronic Systems, Telecommunications and Renewable Energy, 

Nour Bachir El-Bayadh University Center, BP 900 route Aflou, 32000 El Bayadh, Algeria. 

2,3. Advanced Materials and Instrumentation Laboratory, Nour Bachir El-Bayadh University Center, 

BP 900 route Aflou, 32000 El Bayadh, Algeria. 

 

Abstract 

This research work was devoted to finite element numerical modeling of the thermal behavior 

in temperature variation of composite material plates. This plate is made up of three layers of 

a symmetrical laminate and subjected to thermal loads in the form of a thermal gradient. The 

aim is to highlight the different states of thermal stress responsible for damage to the structure. 

We adopt quadrangle finite elements at four nodes with two degrees of freedom per node, the 

results obtained in the form of a nodal solution show in great detail the stress most influenced 

on composite plates among three different stresses. In this numerical modeling, we try to 

highlight the problem of variation in the temperature of the composite material plate, and to 

visualize the results to be able to derive the optimal Young's modulus ratio and the best 

orientation of the fibers under stress. Thermal load. The types and architectures of laminate 

were the subject of a detailed analysis. To predict the thermal behavior of composite plates and 

the influences of type and architectures of laminates on thermal stresses, numerical analysis by 

EF was performed and the results are expressed as graphs. The scenario analyzed is the stress 

field in Cartesian coordinates as a function of the fiber orientation angle, thermal load and the 

orthotropic ratio. The parameters that influence thermal behavior of thermal gradient materials 

are: time, applied thermal load, laminate type and material architecture Thermal variation is a 

key factor that controls thermal behaviors. Finite element numerical modeling also shows the 

state of thermal behavior of the laminated plates, characterized by the maximum thermal stress. 

The results of this modeling also make it possible to define a cold room manufacturing strategy. 

Keywords: Numerical Modeling, Composite Plate, Thermal Stresses, Finite Elements. 

 

1. INTRODUCTION 

Numerical modeling using the finite element method consists on the one hand of 

determining the displacement of the points of the structure under various stresses, and on the 

other hand of properly formulating the variation of the energy, which makes it possible to 

deduce the stresses and deformations. Thus, researchers studied the choice of displacement 

field, as well as the formulation of energy variation [1, 2]. 

The analysis of the dynamic behavior of structures made of composite materials was 

recently developed in a synthesis work developed by Berthelot [3]. 

A numerical study using the element method of free vibrations of laminated plates was 

studied in [4]. The author also derived a set of variational equilibrium equations consisting of 

the kinematic models initially proposed by Levinson and Murthy [5]. 
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In [6], finite element and analytical solutions to predict the behavior of laminated 

composite plates. Using finite element solutions for free vibration analysis of laminated 

composite plates were also obtained in [7]. 

The study of the mechanical behavior of laminates has, until now, been carried out 

considering that the material was related to a temperature reference state, for which the 

deformation field and the stress field in the material were considered to be zero in the absence 

of mechanical loading. 

In practice, structures are subject to temperature variations both during their 

implementation and during their use. The first effect of temperature variation is to modify the 

rigidity and breaking characteristics of the material. Additionally, temperature variation 

produces thermal expansion of the material. 

The distribution of temperatures in the structure and over time is determined from heat 

transfer phenomena. In practice, thermal and swelling phenomena only produce extensions or 

contractions, not affecting shear deformations. 

The most interesting feature of this analysis is that it allows finite elements of 

quadrilateral shape at 4 knots and 2 ddl/nodes of the plates in symmetric laminated composites 

of different fiber orientations. 

 

2. NUMERICAL MODELING BY THE FINITE ELEMENT METHOD 

Consider a square plate ( )L L h   having three orthotropic symmetrical layers with the 

coordinate system shown in Figure 1. 

 

Figure 1: Coordinate system and layer numbering used for a laminate plate type. 

2.1. Iso-parametric representation 

The iso-parametric formulations are used for the task from the numerical calculation 

point of view. Thus, all approximations made on the real element will be replaced by 

approximations on the reference element, the derivatives of the Cartesian coordinates x, y 

replaced by the derivatives of the iso-parametric coordinates , . The coordinates ( , )x    and 

y( , )   of any point ( , )   are defined by: 
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Figure 2 depicts the mesh of the laminate plate according to the four-nodes rectangular 

element with 2 DOF 

 

Figure 2: Laminated plate mesh. 

Where ( , y )i ix  are the coordinates of node i, and the quadratic interpolation functions are 

given by: 

 1 2 3 4N N N N N            (2) 

In the case where the structure is meshed according to laminated elements with four 

nodes (figure 2), the field of membrane displacements at a point is expressed by interpolation 

as a function of these degrees of freedom at the following four nodes: 
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Where iu  and iv  with 1, 2, 3, 4i 
 

are the generalized displacements of the nodes 

respectively n1, n2, n3 and n4 et N1, N2, N3 and N4 are the interpolation functions. 

Such that: 
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Where the one-point shape functions is expressed as: 
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2.2. Elementary stiffness matrix 

The elementary stiffness matrix is calculated as: 

           

    

    

2

2

1 1

1 1

4
( , ) ( , ) ( , ) ( , ) det ( , )

4
     ( , ) ( , ) det ( , )

    ( , ) ( , )

référence

r

T Te

V

é

A

T

férenc

T

e

h
k B x y D B x y dV B D B J dA

L

h
B D B J d d

L

h B D B d d

 

     

       

     
 

 





 

 

 

(8) 

Where: 
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For: 
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The stiffness matrix for layer k of the laminates in the local laminate reference frame is 

expressed as: 
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The constitutive equations of each elastic layer of the laminates in the local frame 

( , , , )k k k kO x y z  must be transformed into the main frame of the laminates ( , , , )O x y z . The 

relationship of the transformation of the laminates from the local frame to the main frame is 

given by equation: 
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Using the material properties defined in previous equation, stiffness constants can be 

expressed as: 
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We can write the Jacobie matrix by the following relation: 
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We can thus write the elementary temperature field by the iso-parametric coordinates by 

the following relation: 
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2.3. Force vector due to elementary thermal gradient 

The force vector due to thermal gradient is calculated by: 
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2.4. Formulation of the thermal behavior of a finite element laminate 

The finite element formulation of the thermal equations is performed as follows: 
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The fundamental equation of applied mathematics is given as: 
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For the thermal behavior of a laminate, the displacement field is given by the following 

relationships: 
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The vector of elementary thermal forces is given by the following relation: 
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The stress equations of a laminate in the local frame ( , , , )k k k kO x y z  should be 

transformed to the global frame of a laminate ( , , , )O x y z  are given by equation (II.13): 
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3. Numerical results and discussions 

Polymerization of the laminate was carried out at a temperature of 120 °C. We want to 

determine the residual stresses at the operating temperature of 20 °C. 

The response of thermal delation of symmetrical laminated plates. The influences of 

parameters such as Young's modulus ratio, fiber orientation angle and temperature variation on 

the thermal behavior of laminated composite material plates are examined from the several 

applications on laminated composite material plates. 
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All layers are assumed to have the same thickness, density and orthotropic material 

characteristics in the main axes of the material. The properties of the laminates used are: 

Table 1: Mechanical and thermal characteristics of orthotropic material 

33[/ ]C  22[/ ]C  11[/ ]C  [ ]T C  21 2 1/E E   12  12[ ]G GPa  1[ ]E GPa  

0 620.10  65.10  Variable Variable 0.25 20.5E  100 

3.1. Problem of variation of the orthotropic ratio with a constant thermal gradient 

Consider a three-layer symmetrical laminated composite material plate (q /0/q), 

rectangular in shape subjected to a thermal gradient of constant temperature variation with a 

variable E1/E2 orthotropic ratio. 

We studied the effect of the variation of the orthotropic ratio E1/E2 and the fiber 

orientation angle q on normal thermal stresses sLL, sTT and tangential sLT with a constant thermal 

gradient of two cases: 

1. Low temperature (cryogeny) as it finds in rooms DT=-60 °C 

2. Average temperature as it finds at rooms stores medicine DT=20 °C 

Numerical results are shown in the following graphs: 
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Figure 3: Variation of normal thermal stress sLL, sTT and tangential sLT as a function of 

fiber orientation angle q for different orthotropic ratio value E1/E2 with two constant 

temperature variations DT= -60 0C and DT= 200C. 

From harsh graphical results of residual thermal stresses calculated by the finite element 

method, 

 Variations in normal thermal stress sLL as a function of fiber orientation angle q for 

different orthotropic ratio values E1/E2. 

With a temperature gradient DT= -60 0C is lower and does not exceed 10 Pa, except for 

the two values of angle q =200 and q =700 with the orthotropic ratio E1/E2=3. 

With a temperature gradient DT=.20 0C is more symmetrically significant and shapeless 

compared to angle q =450 and the influence of the E1/E2 orthotropic ratio on this constraint is 

very considerable. The most important constraints are found at q =400 and q =500 with 

E1/E2=10. 

 The observation taken from reading these figures shows that the influence of the 

orientation angle of the fibers q on the normal thermal stress sTT: 

For DT= -600C is symmetrically significant and formless of original pair function q =450 

with minimum thermal stresses close to 3.25 MPa at the angle q =200 and the influence of the 

orthotropic ratio E1/E2 is weaker because the curves are almost identical. 

For DT= 20 0C shows that the variation with respect to the orientation angle of the fibers 

is an original even function q =450 and the variation with respect to the orthotropic ratio E1/E2 

is a lower one. We note that the normal sTT thermal stresses are positive and maximum for q 

=300 with the orthotropic ratio E1/E2=40. 

 Analysis of the variation of the tangential thermal stress sLT as a function of the 

orientation angle of the fibers q for different values of the orthotropic ratio E1/E2 

with: 

A temperature DT=-60 0C shows that the variation with respect to the orientation angle 

of the fibers is an odd function of origin q =450 and the variation with respect to the orthotropic 

ratio E1/E2 almost small and the curves are identical. We notice that the tangential thermal 

stress sLT is much greater for q =200 with E1/E2= 40.  

A temperature gradient DT= 20 0C are original odd functions q =450 with this function 

almost identical. We notice that the tangential thermal stress sLT is much greater for  q =400 

with E1/E2= 3. 
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3.2. Problem of variation of the thermal gradient with a constant orthotropic ratio 

Consider a plate of symmetrical laminated composite material of three layers (q /0/q), 

rectangular in shape subjected to a thermal gradient of variable temperature variation from -60 
0C up to 20 0C with a constant orthotropic ratio E1/E2=25. 

We studied the effect of temperature variation DT and fiber orientation angle q on normal 

thermal stresses sLL et sTT with the orthotropic ratio E1/E2=25. The numerical results are 

presented in the following graphs: 

 

Figure 04: Variation of the normal thermal stress sLL and 𝜎TT as a function of the 

orientation angle of the fibers q for different temperature variations DT with an 

orthotropic ratio E1/E2=25. 

According to the results obtained, 

 The maximum values of the normal thermal stress sLL are found at the level of q 

=200 and q=700 with DT=-20 0C (sLL =0.5467 MPa). 

The minimum values of normal thermal stress sLL are found at the level of q =20 0 and q 

=70 0 with DT=20 0C (sLL =-0.5467 MPa). Such that the maximum and minimum values of the 

normal thermal stress sLL are varied symmetrically. 

The zero values of the normal thermal stress sLL are found at the level of DT=0 regardless 

of the orientation of the fibers. 

 A first observation drawn from reading these figures is that the influence of the 

orientation angle of the fibers q on the normal thermal stress sTT is considerable in 

a symmetrical and formless manner with respect to the angle  q =450. 

A second observation is that the influence of temperature variation DT on the normal 

thermal stress sTT is considerable symmetrically and informs with respect to the temperature 

DT =0 0C. 

 

4. CONCLUSION 

We studied the thermal behavior of plates made of symmetrical laminated composite 

materials by a numerical model of the finite elements was developed, based on the method of 

fine elements with rectangular elements at four nodes with two degrees of freedom per node 

by varying the ratio orthotropic, thermal gradient and fiber orientation angle; 
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These plates made of symmetrical laminated composite materials contain three layers 

symmetrical with respect to the layer which contains a zero-angle orientation of the fibers; 

The effects of variation of various parameters such as (fiber orientation angle, orthotropic 

ratio, temperature variation) on the thermal behavior of plates made of symmetrical laminated 

composite materials are taken into account; 

Normal and tangential thermal stresses are strongly influenced by variation in fiber 

orientation angle, orthotropic ratio and temperature variation; 

The fiber orientation effect strongly influences the thermal rigidity of the plates; 

Increasing the thermal gradient produces thermal stress. We can say that the thermal 

gradient is positive or negative due to the production of thermal stresses; 

The variation in the orthotropic ratio randomly influences the thermal rigidity of plates 

made of symmetrical laminated composite materials; 

The equality between temperatures between the two plate faces does not generate any 

thermal stress regardless of the temperature value.   
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